ISSN 1006-298X      CN 32-1425/R

导航

肾脏病与透析肾移植杂志

• 论文 • 上一篇    下一篇

基于机器学习的儿童过敏性紫癜肾损害预测研究

  

  • 出版日期:2020-12-28 发布日期:2020-12-28

Prediction of renal damage in children with HenochSchnlein purpura based on machine learning

  • Online:2020-12-28 Published:2020-12-28

摘要: 目的:探讨过敏性紫癜(HSP)患儿发生肾脏损害的相关危险因素,构建儿童紫癜性肾炎预测模型。 方法:选取2016年1月~2018年12月的533例住院患儿,收集人口特征、临床症状、实验室检查等31个指标并进行特征选择后,分别使用Logistic回归和XGBoost算法进行分类预测,使用五折交叉验证来测试算法的准确性,并比较两者的性能。结果:建立的XGBoost预测模型准确率为0818,高于Logistic回归的0727。XGBoost模型的精确率、召回率、Fscore分别为0830、0930、0877,ROC曲线下面积为088,均高于Logistic回归。经过单因素检验、XGBoost模型重要特征排名,居于前十位的变量是:抗链球菌溶血素“O”(ASO),尿N乙酰βD氨基葡萄糖苷酶(NAG),尿视黄醇结合蛋白(RBP),血清IgA,年龄,紫癜复发,皮肤紫癜部位,腹部症状,24h尿蛋白定量,中性粒细胞百分数。 结论:XGBoost模型可以用于预测过敏性紫癜是否发生肾损害,相比于传统Logistic回归算法,预测正确率较高。

关键词: 过敏性紫癜, 肾损害, 机器学习, XGBoost, 预测

Abstract: Objective:To investigate risk factors of renal damage in children with HenochSchnlein purpura (HSP),and to establish a prediction model for children with purpura nephritis.Methodology:533 HSP patients from January 2016 to June 2018 were selected to obtain demographic characteristics,clinical symptoms and laboratory indicators. After feature selection of 31 indicators,Logistic regression and XGBoost algorithm were used for classification prediction,and 50% crossvalidation was used to test the accuracy of algorithm. Finally,we compare the performance of two models.Results:The accuracy of XGBoost prediction model was 0818,higher than that of Logistic regression,which was 0727. The precision rate,recall rate and Fscore of XGBoost model were 0830,0930 and 0877,respectively,and the area under ROC curve was 088,each of which was higher than Logistic regression. After single factor test and ranking of important characteristics of XGBoost model,the variables in the top 10 were:antistreptococcal hemolysin ‘O’ (ASO),urinary NAG,urinary RB protein,serum IgA,age,purpura recurrence,skin purpura site,abdominal symptoms,24hour urinary protein quantification,and neutrophil percentage.Conclusion:XGBoost model can be used to predict occurrence of renal damage in HenochSchnlein purpura. Compared with the traditional Logistic regression algorithm,the prediction accuracy of XGBoost is higher.