ISSN 1006-298X      CN 32-1425/R

导航

肾脏病与透析肾移植杂志 ›› 2024, Vol. 33 ›› Issue (2): 114-120.DOI: 10.3969/j.issn.1006-298X.2024.02.003

• 论著 • 上一篇    下一篇

低血流量体外循环二氧化碳清除效率及其影响因素

  

  • 出版日期:2024-04-28 发布日期:2024-04-23

The efficiency and effective factors of low-flow extracorporeal carbon dioxide removal

  • Online:2024-04-28 Published:2024-04-23

摘要: 目的:通过猪高碳酸血症模型,研究低流量体外循环二氧化碳清除(ECCO2R)装置的二氧化碳(CO2)清除效率及其影响因素。
方法:采用控制性低潮气量建立高碳酸血症模型后,6头实验猪接受基于连续性肾脏替代治疗(CRRT)平台进行的ECCO2R治疗。在治疗的前2 h内,交替采用面积为0.8 m2、1.2 m2的2种膜装置,在气体流量12 L/min情况下,每15 min调整一次,观察血流量(BF)100 mL/min、250 mL/min及400 mL/min时CO2清除量(VCO2)的变化;后续2 h则采用0.8 m2面积的装置及BF 400 mL/min情况下,每15 min调整一次,观察气体流量4 L/min、8 L/min及12 L/min时VCO2的变化;在第3个2 h,膜装置不变及固定12 L/min气体流量情况下,同样调整潮气量以改变膜前CO2分压(PCO2pre),观察BF 100 mL/min、250 mL/min及400 mL/min情况下VCO2的变化;在后续时间继续使用原膜装置,固定BF 400 mL/min、气体流量12 L/min及PCO2pre70 mmHg左右条件持续治疗24 h,观察血气指标随治疗而变化情况。
结果:6头猪共5头完成实验,其中一头因膜装置严重凝血而中断治疗。相同BF情况下2种面积的膜装置校正VCO2无显著差异;气体流量变化对VCO2亦无显著影响;而随着BF增大及PCO2pre升高VCO2则显著增加,三者之间的关系可采用下述拟合方程表示:VCO2 (mL/min)=0.18×BF (mL/min)+1.21×PCO2pre(mmHg)-59.89 (P<0.000 1,条件R2=0.82)。持续24 h治疗中,VCO2基线时最高,达119.33±23.16 mL/min,后续呈缓慢下降并逐渐稳定在60~70 mL/min。动脉CO2分压(PaCO2)第1 h由基线59.22±5.22 mmHg降至48.36±5.02 mmHg, pH值由7.30±0.05升至7.39±0.02(P<0.05)。后续治疗中, PaCO2维持在较平稳状态, 24 h时为51.04±3.98mmHg(P<0.05);pH值略有回落,24 h时为7.34±0.03(P>0.05)。
结论:低流量的ECCO2R的CO2清除效率主要与BF相关,也受到血CO2分压(PCO2)的影响。而0.8 m2或1.2 m2膜面积及4~12 L/min的气体流量对CO2清除效率无明显影响。借助于CRRT平台的低流量持续ECCO2R可有效降低PaCO2。


关键词: 高碳酸血症, 连续性肾脏替代治疗, 低血流量, 体外循环二氧化碳清除

Abstract: Objective:To investigate the efficiency and effective factors of a low-flow extracorporeal carbon dioxide removal (ECCO2R) device in a group of hypercapnia pigs.
Methodology:Controlled by low tidal volume, 6 hypercapnia pigs were treated with extracorporeal carbon dioxide removal (ECCO2R) combined with continuous renal replacement therapy (CRRT). During the first 2 hours, at the gas flow of 12 L/min, 2 membrane devices with the surface area of 0.8 m2 and 1.2 m2 were alternately applicated, adjustments were made every 15 minutes to measure the volume of CO2 removement (VCO2) at blood flow (BF) of 100 mL/min, 250 mL/min, and 400 mL/min. For the next 2 hours, a 0.8m2 area device and a BF of 400 mL/min were provided, and adjustments were also made every 15 minutes at gas flow of 4 L/min, 8 L/min, and 12 L/min. In the third 2 hours, with the 0.8 m2 area device and the gas flow of 12 L/min, adjusted the tidal volume to change the pre-membrane CO2 partial pressure (PCO2pre), measuring the VCO2 at BF 100 mL/min, 250 mL/min, and 400 mL/min. Using the previous membrane device, with the BF 400 mL/min, gas flow 12 L/min and PCO2pre at 70 mmHg for the continuous 24-hour treatment, the changes of indicators in blood gas analysis were observed.
Results:Five out of six pigs completed 24-hour treatment, one of them interrupted treatment due to severe coagulation of the membrane device. There is no difference in the adjusted VCO2 of two membrane devices with the same BF, VCO2 did not increased (P>0.05) as the gas flow increased. As BF or PCO2pre increased, VCO2 significantly increased, the relationship could be represented by the following equation: VCO2 (mL/min)=0.18×BF (mL/min)+1.21×PCO2pre(mmHg)-59.89 (P<0.000 1, conditional R2=0.82). During continuous 24-hour treatment, VCO2 reached its maximum at baseline, 119.33±23.16ml/min, followed by a slowly decrease and gradually stabilizing at 60~70 ml/min. Partial pressure of arterial carbon dioxide (PaCO2) decreased to 48.36±5.02 mmHg from 59.22±5.22 mmHg after the first-hour, and the pH value increased from 7.30±0.05 to 7.39±0.02(P<0.05). In the subsequent treatment, PaCO2 remained relatively stable, with a 24-hour value of 51.04±3.98 mmHg(P<0.05) and the pH value slightly decreased, reaching 7.34±0.03(P>0.05) at 24 hours.
Conclusion:The CO2 removal efficiency of low-flow ECCO2R is mainly related to BF and is also affected by blood PCO2. A membrane area of 0.8 m2 or 1.2 m2 and a gas flow rate of 4 to 12 L/min have no significant effect on CO2 removal efficiency. By utilizing the CRRT platform's low flow continuous ECCO2R, PaCO2can be effectively reduced.


Key words: hypercapnia, continuous renal replacement therapy, low blood flow, extracorporeal carbon dioxide removal