ISSN 1006-298X      CN 32-1425/R

导航

肾脏病与透析肾移植杂志 ›› 2015, Vol. 24 ›› Issue (5): 447-452.

• 论文 • 上一篇    下一篇

转化生长因子β1通过Smad3调控补体应答基因32转录的分子机制

  

  • 出版日期:2015-10-28 发布日期:2015-10-30

The molecular mechanism of  TGF-β1 regulating trascription of response gene to complement 32 through Smad3 pathways

  • Online:2015-10-28 Published:2015-10-30

摘要:

摘要:目的 前期工作发现补体应答基因32(RGC-32)是转化生长因子β(TGF-β)诱导的肾小管上皮-间充质转化(EMT)过程中Smad信号下游的关键调控分子。本研究拟进一步明确TGF-β诱导的肾小管上皮细胞EMT过程中RGC-32的转录调控机制。方法 体外培养NRK-52E细胞,利用荧光素酶报告基因实验检测RGC-32启动子活性以确定Smad结合元件(SBE)是否为TGF-?诱导的RGC-32转录调控位点;通过凝胶迁移率实验(EMSA)明确与之结合的转录调控分子。结果 (1)转染野生型SBE片段的NRK-52E细胞荧光素酶活性明显增高,而转染突变的SBE片段的细胞无此表现,表明SBE是调控TGF-?诱导的RGC-??转录启动的关键位点。(2)合成32P标记的包含SBE的寡核苷酸探针行EMSA可以看到有TGF-β诱导的核蛋白与探针复合物生成,且加入包含SBE序列的竞争片段可以抑制此核蛋白-探针复合物的形成,表明有蛋白与SBE结合并调控RGC-32的转录。(3)当加入不同的Smad抗体行超迁移实验发现Smad2和Smad3抗体可以和复合物相互作用,表明Smad2和Smad3可能是TGF-?诱导的转录复合物的组成部分。(4)将Smad2和Smad3分别与p-1500RGCluc共同转染NRK-52E细胞,Smad3可以显著增加RGC-32启动子活性,表明Smad3是TGF-β1诱导的转录复合物的组成部分,而不是Smad2。结论 在TGF-β诱导EMT过程中,Smad3通过与RGC-32启动子区SBE结合,从而调控肾小管上皮细胞EMT过程。

关键词: 补体应答基因32, 上皮-间充质转化\转化生长因子-β1, Smads, 转录调控

Abstract:

ABSTRACT Objective:To research the molecular mechanisms of Smad3 regulation RGC-32 transcription in TGF-β1 induced Epithelial-mesenchymal Transition on NRK-52E Cells. Methodology: The NRK-52E cells were cultured and transiently transfected in vitro. Luciferase assays were performed to determine whether the SBE plays roles in TGF-β1-induced RGC-32 promoter activation. Electrophoretic mobility shift assays (EMSA) were selected to determine which proteins are the formations of TGF-β1-induced nuclear complex. Results: (1) The Smad binding element (SBE) was important for TGF-β1-induced RGC-32 transcriptional activation. The SBE mutation structure significantly inhibited RGC-32 promoter activity. (2) The SBE was essential for the interaction of TGF-β1-induced nuclear proteins with RGC-32 promoter. It was found that the TGF-β-induced interaction between nuclear factors and RGC-32 promoter in EMSA, and the wild-type DNA containing SBE site as competitors abolished the formation of TGF-β-induced complex. (3) Smad2/3 was the composition of TGF-β1-inducible transcription factor complex bound to RGC-32 promoter as recognized by their specific antibodies in EMSA. (4) Smad2 and Smad3 expression plasmids were co-transfected individually into NRK-52E cells, and then Smad3 significantly increased the RGC-32 promoter activity. This suggests that Smad3, but not Smad2, be presented in the TGF-β1-inducible complex formed by nuclear proteins with RGC-32 promoter. Conclusion: These results illuminated that Smad3 may be combined with RGC-32 promoter region SBE and play an important role in transcriptional regulation in TGF-β-induced renal tubular EMT of NRK-52E cells.

Key words: Response gene to complement 32, Epithelial-mesenchymal transition, Transforming growth factor-β1, Smads, Transcriptional regulation